Feature Selection with Kohonen Self Organizing Classification Algorithm
نویسنده
چکیده
In this paper a one-dimension Self Organizing Map algorithm (SOM) to perform feature selection is presented. The algorithm is based on a first classification of the input dataset on a similarity space. From this classification for each class a set of positive and negative features is computed. This set of features is selected as result of the procedure. The procedure is evaluated on an in-house dataset from a Knowledge Discovery from Text (KDT) application and on a set of publicly available datasets used in international feature selection competitions. These datasets come from KDT applications, drug discovery as well as other applications. The knowledge of the correct classification available for the training and validation datasets is used to optimize the parameters for positive and negative feature extractions. The process becomes feasible for large and sparse datasets, as the ones obtained in KDT applications, by using both compression techniques to store the similarity matrix and speed up techniques of the Kohonen algorithm that take advantage of the sparsity of the input matrix. These improvements make it feasible, by using the grid, the application of the methodology to massive datasets. Keywords—Clustering algorithm, Data mining, Feature selection, Grid, Kohonen Self Organizing Map.
منابع مشابه
Kohonen Self Organizing for Automatic Identification of Cartographic Objects
Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...
متن کاملDiscovering Genomic Expression Patterns with Self-organizing Neural Networks
1. INTRODUCTION Self-organizing neural networks represent a family of useful clustering-based classification methods in several application domains. One such technique is the Kohonen Self-Organizing Feature Map (SOM) (Kohonen,
متن کاملFingerprint classification using Kohonen topologic map
Self Organizing Maps are efficient and usual for dimension reduction and data clustering. In our present work, we propose the use of Kohonen Topologic Map for fingerprint pattern classification. The learning process takes into account the large intra-class diversity and the continuum of fingerprint pattern types. After a brief introduction to fingerprint domain-specific knowledge and the expert...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملGeneralized Winner-Relaxing Kohonen Self-Organizing Feature Maps
We calculate analytically the magnification behaviour of a generalized family of self-organizing feature maps inspired by a variant introduced by Kohonen in 1991, denoted here as Winner Relaxing Kohonen algorithm, which is shown here to have a magnification exponent of 4/7. Motivated by the observation that a modification of the learning rule for the winner neuron influences the magnification l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012